If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-158=0
a = 2; b = 14; c = -158;
Δ = b2-4ac
Δ = 142-4·2·(-158)
Δ = 1460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1460}=\sqrt{4*365}=\sqrt{4}*\sqrt{365}=2\sqrt{365}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{365}}{2*2}=\frac{-14-2\sqrt{365}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{365}}{2*2}=\frac{-14+2\sqrt{365}}{4} $
| 7j+37=12j-98 | | 7y+55=38y-100 | | 10h-81=h+54 | | 65s+27=99s-41 | | 13m-34=12m-15 | | 22t-18=32t-88 | | 3j-7=4j-21 | | 54a+98=95a-66 | | F(x)=10+20xM(x)=2.5 | | 17z=238 | | -2x-1=4x^2 | | 71b+30=85b+16 | | y-17=-2 | | 3p-71=p+95 | | 1/9x^2+11/3x=0 | | M(x)=2.5 | | 6z+83=12z+35 | | 4r+16=3r+73 | | 50f+38=30f+78 | | 5n-41=6n-53 | | 9x-50=58x-99 | | 13q-29=11q+3 | | 16-2t=t=9=4t | | 8b+12=12b-88 | | 2.55d=27.85 | | 5s+19=8s+1 | | 3r+38=19r-58 | | 20n+32=19n+37 | | 9n+37=25n-59 | | 0.7x^2+6x+2.7=0 | | 0.7x+6x+2.7=0 | | 20b^2+37b+3=-12 |